Factorise : $x^{3}-3 x^{2}-9 x-5$
$x^{3}-3 x^{2}-9 x-5$
We have $p(x)=x^{3}-3 x^{2}-9 x-5$
By trial, let us find : $p (1)=(1)^{3}-3(1)^{2}-9(1)-5=3-3-9-5$
$=-14 \neq 0 $
Now $p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5=-1-3(1)+9-5$
$=-1-3+9-5=0$
$\therefore$ By factor theorem, $[ x -(-1)]$ is a factor of $p ( x )$.
Now, $\frac{x^{3}-3 x^{2}-9 x-5}{x-(-1)}=x^{2}-4 x-5$
$\therefore x^{2}-3 x^{2}-9 x-5 =(x+1)\left(x^{2}-4 x-5\right) $
$=(x+1)\left[x^{2}-5 x+x-5\right]$
[Splitting $-4$ into $-5$ and $+1$]
$=(x+1)[x(x-5)+1(x-5)]$
$=(x+1)[(x-5)(x+1)]$
$=(x+1)(x-5)(x+1)$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$
Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:35{y^2}+ 13y - 12}$
Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$
Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$