Factorise : $x^{3}-3 x^{2}-9 x-5$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$x^{3}-3 x^{2}-9 x-5$

We have                      $p(x)=x^{3}-3 x^{2}-9 x-5$

By trial, let us find :  $p (1)=(1)^{3}-3(1)^{2}-9(1)-5=3-3-9-5$

                                     $=-14 \neq 0 $

Now                    $p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5=-1-3(1)+9-5$

                               $=-1-3+9-5=0$

$\therefore$ By factor theorem, $[ x -(-1)]$ is a factor of $p ( x )$.

Now,            $\frac{x^{3}-3 x^{2}-9 x-5}{x-(-1)}=x^{2}-4 x-5$

 $\therefore x^{2}-3 x^{2}-9 x-5 =(x+1)\left(x^{2}-4 x-5\right) $

                   $=(x+1)\left[x^{2}-5 x+x-5\right]$

                            [Splitting $-4$ into $-5$ and $+1$]

                  $=(x+1)[x(x-5)+1(x-5)]$

                  $=(x+1)[(x-5)(x+1)]$

                  $=(x+1)(x-5)(x+1)$

Similar Questions

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=2 x+1, \,\,x=\frac{1}{2}$

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$

Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given : $\boxed{\rm {Area}\,:35{y^2}+ 13y - 12}$

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$